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Side-channel attacks
A real world threat against embedded systems

Figure: Power analysis classic setup [2]

2



Deep learning applied to side-channel attacks

Profiled attacks
Require a clone of the target.

Create a dataset with control of the inputs.

Train deep networks on weak points (intermediates)

Infer the key from the target.

Straightforward in white-box

Challenges ?
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Motivation

Plateau Effect
Introduced in "Don’t Learn What You Already Know", Masure

et al. [3]

Initial confusion due to the random values given as weights to

the model

Complexity of the attack => Passing the plateau
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Plateau Effect

Figure: Example of the plateau effect on two training runs

How to build deep learning models that consistently break
through the plateau?
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Contributions

We discuss :

The consistency of convergence of multi-task, and single-task

models across seeds.

Ways of sharing weights inside a deep learning model

We show that:

Multi-task models are more consistent at breaking through the

plateau

Shared layers can introduce helpful constraints

Multi-target strategies can be helpful even during training
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Why does multi-task learning make sense?

Introduced by Caruana in "Multitask Learning",[1]

Benefits
Data amplification/augmentation.

Input understanding.

Eavesdropping between tasks.

Representation bias.

Better utilization of computing resources.

Drawbacks
Competition of losses

More expensive VRAM-wise
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D-branch networks
Single-task

l ✓ x

(a) Classic single-task model

l

✓1

✓2

f� x

(b) D-branch single-task model

Figure: Hard encoding of the masking scheme inside the network
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Encoding the masking scheme in custom layers

Custom layers :
f� : Xor

f �1
⌦ : Inverse multGF256

The calculation of f�, f �1
⌦ is a conditional probability:

8
>>>>>><

>>>>>>:

f�(x , y)[i ] =
255X

j=0

x [j ]⇥ y [i � j ] 8 i 2 [0, 255]

f �1
⌦ (x , y)[i ] = x [0] +

255X

j=1

x [j ]⇥ y [i ⌦ j ] 8 i 2 [0, 255]

(1)

(2)
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High-level parameter sharing

Classic design from Caruana [1] with shared layer ✓8

l ✓8

✓n⌧

✓1 x1

xn⌧

Figure: Multi-task design with high-level parameter sharing
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High-level parameter sharing
Adapted

Adapted design for two boolean shares with shared layer ✓8

l ✓8

✓n⌧

✓1

✓n⌧+1

✓2n⌧

f�

f� x1

xn⌧

Figure: Multi-task design with high-level parameter sharing, d = 2
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Expert layer
Shared randomness

Layers ✓n⌧+1
to ✓2n⌧ are collapsed into a single layer ✓n⌧+1

l ✓8

✓1

✓n⌧

✓n⌧+1

f�

f�

x1

xn⌧

Figure: Multi-task design with high-level parameter sharing and shared

randomness
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Low-level parameter sharing
Not shared randomness

✓i⇤n⌧+1, ... , ✓i⇤n⌧+n⌧ are fed to the respective prediction head ✓di+1

l ✓8

✓n⌧

✓1

✓n⌧+1

✓2n⌧

✓d2

✓d1 f�

f�

x1

xn⌧

Figure: Multi-task design with high-level and low-level parameter sharing
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Datasets and experiments

Datasets
ASCAD-r : raw traces with 250k samples

ASCAD-v2 : extracted PoIs, permutations "disabled"

Spartan-6 : extracted cycles of interest

Experiments
Collection of epoch of convergence with 10 different seeds

Expert layer with shared mask (ASCADr, ASCADv2)

Low-level parameter sharing (ASCADr, Spartan-6)

Multi-target with shared mask (ASCADv2)
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Collection of epoch of convergence

(a) ASCAD-r (b) ASCAD-v2

Figure: Examples of the acquisition of the epoch of convergence for all

seeds of one model type.
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CHESCTF 2023, Spartan-6

Figure: Dataflow on the Subbytes inputs wires

Leakage : Hamming distance
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ASCAD-r : Expert layer with shared mask

Target : ti = (ti � ri )� ri

Models :

Single-task: ms

Multi-task with expert layer: mnt+(d�1)

Multi-task with expert layer, low-level parameter sharing: md
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ASCAD-r : Expert layer with shared mask
Epoch of convergence
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ASCAD-r : Expert layer with shared mask
Performance metrics

Model type fr nwin/nseeds Twin best Twin
ms 0.56 0.0 >100 >100

mnt+(d�1) 0.4 0.6 4.33 4

md 0.0 1.0 5.8 2

fr = failure rate of a training run across all bytes

nwin/nseeds = ratio of seeds leading to full key recovery

Twin = Trace at which the full key is recovered
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ASCAD-r : Low-level parameter sharing

Target : si = (si � ri )� ri

Models :

Single-task : ms

Multi-task : mnt .d

Multi-task with low-level parameter sharing : md
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ASCAD-r : Low-level parameter sharing
Epoch of convergence
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ASCAD-r : Low-level parameter sharing
Performance metrics

ASCAD-r

Model type fr nwin/nseeds Twin best Twin
ms 0.69 0.0 >100 >100

mnt .d 0.21 0.4 6 5

md 0.0 1.0 2.13 2

fr = failure rate of a training run across all bytes

nwin/nseeds = ratio of seeds leading to full key recovery

Twin = Trace at which the full key is recovered
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Spartan-6 : Low-level parameter sharing

Target : ti = (ti � ri )� ri

Figure: True rank evolution for all targeted bytes across all seeds and

models
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ASCAD-v2 : Multi-target with shared mask

Targets :

ti = rm ⌦�1 ((rm ⌦ ti � rin)� rin)

si = rm ⌦�1 ((rm ⌦ si � rout)� rout)

Models :

Multi-task, single target trained only for ti : mst�d

Multi-task, multi target: mnt+(d�1)

Multi-task, multi target, and low-level parameter sharing : md
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ASCAD-v2 : Multi-target with shared mask
Performance metrics

Model type nwin/nseeds Twin best Twin
mst�d 0.0 >200 >200

mnt+(d�1) 0.0 >200 >200

md 0.5 17.6 16

fr = failure rate of a training run across all bytes

nwin/nseeds = ratio of seeds leading to full key recovery

Twin = Trace at which the full key is recovered
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Conclusion

What I am not saying
Multi-task is always more performant than single-task

Sharing layers is always beneficial

What can be concluded
Multi-task needs less profiling traces to converge consistently

Careful constraints are helpful to improve the latter point

Multi-target strategies can be implemented even during

training

Multi-task make evaluations faster
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